Infrared Light Therapy Clinical Research

How Cells Harvest Energy (2014)

Research shows that light therapy can both benefit the look of skin and heal the underlying issue that is causing the condition. When red and near infrared light is absorbed by the skin, it stimulates new skin cells to grow in a healthier way, provides protection against damage, and helps heal a variety of skin problems.
Raven, P. H.; Johnson, G. B.; Mason, K. A.; Losos, J. B.; Singer, S. R. How cells harvest energy. 2014 In Biology 10th ed. AP ed. pp. 122-146. New York, NY: McGraw-Hill.

Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring

Not surprisingly, there’s a robust amount of clinical research that has demonstrated specific benefits of light therapy related to the skin. An extensive meta analysis in a 2013 issue of Seminars in Cutaneous Medicine and Surgery evaluated many ways in which light therapy can be used for the skin, some of which are outlined in the proceeding paragraphs.

Specific to anti-aging, this meta-analysis discussed numerous studies showing that LED light therapy can actually reduce and counteract signs of aging in the skin. Red and near infrared light has been shown to boost collagen, smooth wrinkles, enhance tone, as well as a host of other benefits. Also of note, while light therapy boosted positive skin results, it also reduced an enzyme that contributes to skin damage.
Avci P, Gupta A, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in Cutaneous Medicine and Surgery. Mar 2013; 32(1): 41-52

A Controlled Trial to Determine the Efficacy of Red and Near-Infrared Light Treatment in Patient Satisfaction, Reduction of Fine Lines, Wrinkles, Skin Roughness, and Intradermal Collagen Density Increase

2014 controlled trial in Photomedicine and Laser Surgery also backed up the use of red and near infrared light therapy to treat skin aging. The treatment boosted collagen and participants experienced a better look and feel in their skin, which was supported by photographs. Overall, researchers found light therapy to be safe and effective.

Regarding acne, the same 2013 meta-analysis we mentioned before highlighted studies finding red and near infrared light to be effective for the treatment of acne. Of note, it explained that red light impacts sebum production, which contributes to acne, in addition to the control of cytokines, which impacts skin inflammation.

The meta-analysis also showed that light therapy resolved psoriasis in patients that were not helped by traditional treatments, improved pigmentation in patients with vitiligo disorder, and reduced episode of herpes. It also boosted healing and improved scars and burns. Overall, the authors of the meta-analysis noted that light therapy could be used for many skin concerns because of its wide range of positive results. It was particularly effective for healing and skin regeneration, as well as reducing inflammation and cellular necrosis.
Wunsch A and Matuschka K. A Controlled Trial to Determine the Efficacy of Red and Near-Infrared Light Treatment in Patient Satisfaction, Reduction of Fine Lines, Wrinkles, Skin Roughness, and Intradermal Collagen Density Increase. Photomedicine and Laser Surgery. Feb 2014; 32(2): 93-100.

The Consensus is Clear: Numerous Clinical Studies Provide Solid Evidence that Infrared Light Therapy is an Effective Skin Treatment

More light therapy Studies

The use of light-emitting diode therapy in the treatment of photoaged skin

SOURCE: J Cosmet Dermatol. 2007 Sep;6(3):189-94

BACKGROUND: Light-emitting diode (LED) therapy is an increasingly popular methodology for the treatment of sun damage. Combination use of light wavelengths reported to stimulate collagen synthesis and accelerate fibroblast-myofibroblast transformation may display a composite rejuvenative effect.

OBJECTIVE: To clinically assess reduction in sun damage signs following a 5-week course of LED therapy and to assess subject's perception of the treatment.

METHODS: Thirteen subjects with wrinkles or fine lines in the periorbital and nasolabial region and those presenting Glogau scale photodamage grade II-III received nine 20-min duration light treatments using the Omnilux LED system. The treatments combined wavelengths of 633 and 830 nm at fluences of 126 and 66 J/cm(2), respectively. Sun-damage reduction was assessed at 6, 9, and 12 weeks by clinical photography and patient satisfaction scores.

RESULTS: The majority of subjects displayed "moderate" (50%) or "slight" (25%) response to treatment at investigator assessment. Treatment of the periorbital region was reported more effective than the nasolabial region. At 12-week follow-up, 91% of subjects reported improved skin tone, and 82% reported enhanced smoothness of skin in the treatment area.

CONCLUSION: Good response to LED therapy has been shown in this modest sample. Larger trials are needed to assess optimum frequency of light treatments and overall treatment time.

A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings

SOURCE: J Photochem Photobiol B. 2007 Jul 27;88(1):51-67. Epub 2007 May 1

BACKGROUND: Light-emitting diodes (LEDs) are considered to be effective in skin rejuvenation.

OBJECTIVE: We investigated the clinical efficacy of LED phototherapy for skin rejuvenation through the comparison of three different treatment parameters and a control, and also examined the LED-induced histological, ultrastructural, and biochemical changes.

METHODS: Seventy-six patients with facial wrinkles were treated with quasimonochromatic LED devices on the right half of their faces. All subjects were randomly divided into four groups treated with either 830nm alone, 633nm alone, a combination of 830 and 633nm, or a sham treatment light, twice a week for four weeks. Serial photography, profilometry, and objective measurements of the skin elasticity and melanin were performed during the treatment period with a three-month follow-up period. The subject’s and investigator’s assessments were double-blinded. Skin specimens were evaluated for the histologic and ultrastructural changes, alteration in the status of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), and the changes in the mRNA levels of IL-1ss, TNF-alpha, ICAM-1, IL-6 and connexin 43 (Cx43), by utilizing specific stains, TEM, immunohistochemistry, and real-time RT-PCR, respectively.

RESULTS: Objectively measured data showed significant reductions of wrinkles (maximum: 36%) and increases of skin elasticity (maximum: 19%) compared to baseline on the treated face in the three treatment groups. Histologically, a marked increase in the amount of collagen and elastic fibers in all treatment groups was observed. Ultrastructural examination demonstrated highly activated fibroblasts, surrounded by abundant elastic and collagen fibers. Immunohistochemistry showed an increase of TIMP-1 and 2. RT-PCR results showed the mRNA levels of IL-1ss, TNF-alpha, ICAM-1, and Cx43 increased after LED phototherapy whereas that of IL-6 decreased.

CONCLUSION: This therapy was well-tolerated by all patients with no adverse effects. We concluded that 830 and 633nm LED phototherapy is an effective approach for skin rejuvenation.

Clinical experience with light-emitting diode (LED) photomodulation

SOURCE: Dermatol Surg. 2005 Sep;31(9 Pt 2):1199-205

BACKGROUND: Light-emitting diode (LED) photomodulation is a novel nonthermal technology used to modulate cellular activity with light.

OBJECTIVE: We describe our experience over the last 2 years using 590 nm LED photomodulation within a dermatologic surgery environment.

METHODS: Practical use of nonthermal light energy and emerging applications in 3,500 treatments delivered to 900 patients is detailed.

RESULTS: LED photomodulation has been used alone for skin rejuvenation in over 300 patients but has been effective in augmentation of results in 600 patients receiving concomitant nonablative thermal and vascular treatments such as intense pulsed light, pulsed dye laser, KTP and infrared lasers, radiofrequency energy, and ablative lasers.

CONCLUSION: LED photomodulation reverses signs of photoaging using a new nonthermal mechanism. The anti-inflammatory component of LED in combination with the cell regulatory component helps improve the outcome of other thermal-based rejuvenation treatments.

Regulation of skin collagen metabolism in virtro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study

SOURCE: J Invest Dermatol. 2009 Dec;129(12):2751-9. doi: 10.1038/jid.2009.186. Epub 2009 Jul 9

BACKGROUND: It has been reported that skin aging is associated with a downregulation in collagen synthesis and an elevation in matrix metalloproteinase (MMP) expression.

OBJECTIVE: This study investigated the potential of light-emitting diode (LED) treatments with a 660 nm sequentially pulsed illumination formula in the photobiomodulation of these molecules.

METHODS: Histological and biochemical changes were first evaluated in a tissue-engineered Human Reconstructed Skin (HRS) model after 11 sham or LED light treatments. LED effects were then assessed in aged/photoaged individuals in a split-face single-blinded study.

RESULTS: Results yielded a mean percent difference between LED-treated and non-LED-treated HRS of 31% in levels of type-1 procollagen and of -18% in MMP-1. No histological changes were observed. Furthermore, profilometry quantification revealed that more than 90% of individuals showed a reduction in rhytid depth and surface roughness, and, via a blinded clinical assessment, that 87% experienced a reduction in the Fitzpatrick wrinkling severity score after 12 LED treatments. No adverse events or downtime were reported.

CONCLUSION: Our study showed that LED therapy reversed collagen downregulation and MMP-1 upregulation. This could explain the improvements in skin appearance observed in LED-treated individuals. These findings suggest that LED at 660 nm is a safe and effective collagen-enhancement strategy.

Green tea and red light: a powerful duo in skin rejuvenation

SOURCE: Photomed Laser Surg. 2009 Dec;27(6):969-71. doi: 10.1089/pho.2009.2547

OBJECTIVE: Juvenile skin has been the subject of intense research efforts since ancient times. This article reports on synergistic complementarities in the biological actions of green tea and red light, which inspired the design of a green tea-assisted facial rejuvenation program.

BACKGROUND: The approach is based on previous laboratory experiments providing insight into a mechanism by which visible light interacts with cells and their microenvironment.

METHODS: After 2 months of extreme oxidative stress, green tea-filled cotton pads were placed once per day for 20 minutes onto the skin before treatment with an array of light-emitting diodes (central wavelength 670 nm, dermal dose 4 J/cm2).

RESULTS: Rejuvenated skin, reduced wrinkle levels, and juvenile complexion, previously realized in 10 months of light treatment alone were realized in 1 month.

CONCLUSION: The accelerated skin rejuvenation based on the interplay of the physicochemical and biological effects of light with the reactive oxygen species scavenging capacity of green tea extends the action spectrum of phototherapy. The duo opens the gate to a multitude of possible biomedical light applications and cosmetic formulas, including reversal of topical deterioration related to excess reactive oxygen species, such as graying of hair.

LED photoprevention: reduced MED response following multiple LED exposures

SOURCE: Lasers Surg Med. 2008 Feb;40(2):106-12. doi: 10.1002/lsm.20615

BACKGROUND: As photoprotection with traditional sunscreen presents some limitations, the use of non-traditional treatments to increase skin resistance to ultraviolet (UV) induced damage would prove particularly appealing.

OBJECTIVE: The purpose of this pilot study was to test the potential of non-thermal pulsed light-emitting diode (LED) treatments (660 nm) prior to UV exposure in the induction of a state of cellular resistance against UV-induced erythema.

METHODS: Thirteen healthy subjects and two patients with polymorphous light eruption (PLE) were exposed to 5, 6, or 10 LED treatments (660 nm) on an experimental anterior thigh region. Individual baseline minimal erythema doses (MED) were then determined. UV radiation was thereafter performed on the LED experimental and contrl anterior thigh areas. Finally, 24 hours post-UV irradiation, LED pre-treated MED responses were compared to the non-treated sites.

RESULTS: Reduction of erythema was considered significant when erythema was reduced by >50% on the LED-treated side as opposed to the control side. A significant LED treatment reduction in UV-B induced erythema reaction was observed in at least one occasion in 85% of subjects, including patients suffering from PLE. Moreover, there was evidence of a dose-related pattern in results. Finally, a sun protection factor SPF-15-like effect and a reduction in post-inflammatory hyperpigmentation were observed on the LED pre-treated side.

CONCLUSION: Results suggest that LED based therapy prior to UV exposure provided significant protection against UV-B induced erythema. The induction of cellular resistance to UV insults may possibly be explained by the induction of a state a natural resistance to the skin via specific cell signaling pathways and without the drawbacks and limitations of traditional sunscreens. These results represent an encouraging step towards expanding the potential applications of LED therapy and could be useful in the treatment of patients with anomalous reactions to sunlight.

A Controlled Trial to Determine the Efficacy of Red and Near-Infrared Light Treatment in Patient Satisfaction, Reduction of Fine Lines, Wrinkles, Skin Roughness, and Intradermal Collagen Density Increase

SOURCE: Photomed Laser Surg. 2014 Feb 1; 32(2): 93–100.

doi: [10.1089/pho.2013.3616]

BACKGROUND: For non-thermal photorejuvenation, laser and LED light sources have been demonstrated to be safe and effective. However, lasers and LEDs may offer some disadvantages because of dot-shaped (punctiform) emission characteristics and their narrow spectral bandwidths. Because the action spectra for tissue regeneration and repair consist of more than one wavelength, we investigated if it is favorable to apply a polychromatic spectrum covering a broader spectral region for skin rejuvenation and repair

OBJECTIVE: The purpose of this study was to investigate the safety and efficacy of two novel light sources for large area and full body application, providing polychromatic, non-thermal photobiomodulation (PBM) for improving skin feeling and appearance.

METHODS: A total of 136 volunteers participated in this prospective, randomized, and controlled study. Of these volunteers, 113 subjects randomly assigned into four treatment groups were treated twice a week with either 611–650 or 570–850 nm polychromatic light (normalized to ∼9 J/cm2 in the range of 611–650 nm) and were compared with controls (n=23). Irradiances and treatment durations varied in all treatment groups. The data collected at baseline and after 30 sessions included blinded evaluations of clinical photography, ultrasonographic collagen density measurements, computerized digital profilometry, and an assessment of patient satisfaction.

RESULTS:The treated subjects experienced significantly improved skin complexion and skin feeling, profilometrically assessed skin roughness, and ultrasonographically measured collagen density. The blinded clinical evaluation of photographs confirmed significant improvement in the intervention groups compared with the control.

CONCLUSION: Broadband polychromatic PBM showed no advantage over the red-light-only spectrum. However, both novel light sources that have not been previously used for PBM have demonstrated efficacy and safety for skin rejuvenation and intradermal collagen increase when compared with controls.

The Efficacy and Safety of 660 nm and 411 to 777 nm Light-Emitting Devices for Treating Wrinkles.

SOURCE: Dermatol Surg. 2017 Mar;43(3):371-380. doi: 10.1097/DSS.0000000000000981.

BACKGROUND:Low-level light therapy (LLLT) using light-emitting diodes (LEDs) is considered to be helpful for skin regeneration and anti-inflammation.

OBJECTIVE:To evaluate the efficacy and safety of 2 types of LLLTs using 660 nm-emitting red LEDs and 411 to 777 nm-emitting white LEDs in the treatment of facial wrinkles.

METHODS: A prospective, randomized, double-blinded, comparative clinical trial involving 52 adult female subjects was performed. The faces of the subjects were irradiated daily with 5.17 J of red or white LEDs for 12 weeks.

RESULTS:In both groups treated with red and white LEDs, the wrinkle measurement from skin replica improved significantly from baseline at Week 12. The red LED group showed slightly better improvement, but there were no statistical differences. In assessments by blinded dermatologists, no significant differences were observed in both groups. In the global assessment of the subjects, the mean improvement score of the red LED group was higher than that of the white LED group.

CONCLUSION:Low-level light therapy using 660 nm LEDs or 411 to 777 nm LEDs significantly improved periocular wrinkles. Especially, 660 nm LEDs could be an effective and tolerable treatment option for wrinkles.

A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation.

SOURCE:J Cosmet Laser Ther. 2005 Dec;7(3-4):196-200.

BACKGROUND:The use of visible or near infrared spectral light alone for the purpose of skin rejuvenation has been previously reported. A method of light emitting diode (LED) photo rejuvenation incorporating a combination of these wavelengths and thus compounding their distinct stimulation of cellular components is proposed.Objective. To assess the efficacy and local tolerability of combination light therapy in photo rejuvenation of facial skin.

METHODS: Thirty-one subjects with facial rhytids received nine light therapy treatments using the Omnilux LED system. The treatments combined wavelengths of 633 nm and 830 nm with fluences of 126 J/cm(2) and 66 J/cm(2) respectively. Improvements to the skin surface were evaluated at weeks 9 and 12 by profilometry performed on periorbital casts. Additional outcome measures included assessments of clinical photography and patient satisfaction scores.

RESULTS: Key profilometry results Sq, Sa, Sp and St showed significant differences at week 12 follow-up; 52% of subjects showed a 25%-50% improvement in photoaging scores by week 12; 81% of subjects reported a significant improvement in periorbital wrinkles on completion of follow-up.

CONCLUSION: Omnilux combination red and near infrared LED therapy represents an effective and acceptable method of photo rejuvenation. Further study to optimize the parameters of treatment is required.